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The integral momentum and tracer equations for the mean motion with the turbulence
contribution in momentum and tracer fluxes are integrated on the centreline of either
plane or round buoyant jets, using suitable assumptions for the spreading coefficients
and a closing function, and unified first- and second-order solutions are derived
in the entire buoyancy range for mean axial velocities and mean concentrations.
Comparisons to experimental data in the literature validate the model and show
that second-order solutions deviate less than first-order solutions. Both types are
used in conjunction with the integral continuity and kinetic energy equations for
the mean motion to determine the variation of the local Richardson and Froude
numbers, dispersion ratio, bulk dilution, dilution ratio, entrainment coefficient and
mean velocity, kinetic energy flux and its gradient for the mean motion; and the
variations of these quantities are evaluated using reported experimental or theoretical
data. Finally, the variation of the product of kinetic energy flux and the local
Richardson number is examined and a universal constant for both plane and round
buoyant jets is revealed, leading to a unified definition of the local Richardson number,
which is independent of the flow and mixing geometry and could be useful. Simple
computational programming and good overall agreement make the proposed model
a very promising tool for laboratory and field studies, outfall design and validation
of numerical models.

1. Introduction
The outfall discharge of wastewater or warm water into surface-water bodies or

the chimney release of air pollutants and volcanic gas eruptions into the atmosphere
are associated with complicated turbulent buoyant-jet phenomena; in depth know-
ledge of these relationships is required for environmental quality assessment and design
optimization of the discharge structures, minimizing cost and providing environmental
protection.

The integral method is popular for solving buoyant-jet problems. It is based on
simplified partial differential equations (continuity, momentum and tracer transport)
by adopting commonly used approximations for such types of flow and mixing phe-
nomena. The equations are integrated on the jet cross-section, applying the similarity
assumption and actual boundary conditions to yield a system of ordinary differential
equations, and then the system may be solved either analytically or numerically. There
are two approaches to the final integration of the set of ordinary differential equations:
(a) using the entrainment concept (Morton, Taylor & Turner 1956) and making
suitable assumptions for the entrainment coefficient (Morton 1959; List & Imberger
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1973; Turner 1986; Lee & Cheung 1990; Davidson, Gaskin & Wood 2002; Jirka 2004);
and (b) using the spreading concept (Abraham 1963) and making suitable assumptions
for the spreading coefficient (Noutsopoulos & Yannopoulos 1987, hereinafter referred
to as NY; Yannopoulos & Noutsopoulos 1990, hereinafter referred to as YN). These
procedures have been extensively discussed and compared in the literature (Jirka,
Abraham & Harleman 1975). A major advantage of the integral method is the
formulation of a simple problem, employing closure assumptions based on semi-
empirical approximations without the need for assigning detailed turbulence charac-
teristics. Integral solutions usually provide an acceptable level of accuracy, sometimes
resulting in unified analytical expressions; they are widely used in laboratory and field
studies, as well as in validating complex numerical models. Jirka (2004) describes in
detail the use of the integral method in buoyant-jet flows and its applicability limits;
he and his co-workers have formulated and validated the Corjet integral model, which
has been incorporated in the Cormix model (Jirka, Doneker & Hinton 1996).

The majority of integral models consider only the mean mass and momentum
fluxes in the set of conservation equations. These endeavours are referred to as
first-order integral models to distinguish them from those that take into account
the turbulence contribution to the mass and momentum fluxes; because of improved
accuracy, the latter models have been termed second-order integral models. Few
models treat the turbulence contribution as a fixed percentage of the related mean
flux (Wood, Bell & Wilkinson 1993; Davidson et al. 2002) and only the model by
Wang & Law (2002) is an original second-order as it takes into account the variable
contribution of the turbulent mass and momentum fluxes and considers the change
in the concentration-to-velocity width ratio from jet to plume.

The spreading concept is adopted in this paper and a closure assumption concerning
a function of the spreading coefficients is proposed; this enables integration of
the momentum and tracer equations and provides unified solutions over the entire
Froude number range regarding centreline distributions of the mean axial velocity
and mean concentration for either plane or round vertical turbulent buoyant jets in
a quiescent ambient fluid of uniform density. Additionally, both the variation of the
concentration-to-velocity width ratio and the variable turbulence contribution to mass
and momentum fluxes are considered in the entire buoyancy range. Consequently,
the present work could be considered a second-order integral model or simply a
second-order approach (SOA), since it yields better accuracy than models using the
first-order approach (FOA), reducing absolute errors below 10 %. In order to reach
the SOA solutions, however, FOA solutions are required. Solutions obtained in this
study are compared with experimental data available in the literature, and additional
significant implications are drawn and discussed.

2. Theoretical considerations
2.1. Governing equations

A two-dimensional or three-dimensional flow and mass transport configuration for a
plane or round vertical turbulent buoyant jet in steady-state conditions in a Cartesian
(O, xyz) or cylindrical (O, rϕz) coordinate system, respectively, with the z-axis vertical,
is shown with all pertinent quantities identified in figure 1. The line or point source is
located on the system y-axis and origin O , respectively; the z-axis coincides with the
jet centreline and the flow and concentration fields are symmetrical with respect to
the (z, x) and (z, y)-planes. The fluid densities are ρ0 at the jet exit and ρa (ρa � ρ0)
at the ambient, while ρ is the density at a point (x, y, z) of the flow field; subscripts
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Figure 1. Definition of a plane or round vertical buoyant jet.

0 and a denote jet-exit and ambient-fluid locations. The density differences are
considered small enough, so that ρa/ρ0 ≈ 1. For the analytical description of the mean
flow characteristics, usually accepted assumptions are considered, including: (a) the
Boussinesq’s approximation made for small initial density differences, �ρ0 = ρa −ρ0 �
ρ0 < ρa; (b) the Prandtl’s boundary-layer-type approximation; (c) negligible molecular
viscosity terms and; (d) no swirl. Taking into consideration the symmetry of the flow
with respect to the (z, x)- and (z, y)-planes and the conservation principles of volume,
momentum, tracer-mass and mean kinetic energy for steady turbulent flow, the
following synoptic forms of four partial differential equations are obtained:

continuity

∂(riw)

∂z
+

∂(riu)

∂r
= 0, (2.1)

momentum

∂

∂z
[ri(w2 + w′2)] +

∂(riwu)

∂r
= g′

0r
ic +

∂(riτzr )

ρ0∂r
, (2.2)

conservation of tracer

∂

∂z
[ri(wc + w′c′)] +

∂(riuc)

∂r
= −∂(riu′c′)

∂r
, (2.3)

conservation of mean kinetic energy

∂(riwω)

∂z
+

∂(riuω)

∂r
= g′

0r
iwc − rif, (2.4)

where i = 0 or 1 for a plane or round buoyant jet, respectively; w is the axial mean
velocity component (z-direction), u the transverse mean velocity component (radial for

a round buoyant jet), and r =
√

x2 + iy2 the transverse distance from the jet centreline
(jet cross-section radius for a round buoyant jet); g′

0 = g(ρa − ρ)/(ρa − ρ0) = g�ρ0/ρ0

is the apparent acceleration due to gravity; τzr is the mean turbulent shear stress
on the (z, r)-plane and parallel to the z-axis; c = (ρa − ρ)/(ρa − ρ0) = �ρ/�ρ0 is the
relative mean concentration of tracer; w′2, w′c′, u′c′ are the local mean axial velocity
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Flux Definition Initial value

Volume µ=
∫

A
w dA µ0 = A0w0

Momentum m =
∫

A
(w2 + w′2) dA = λM

∫
A

w2 dA m0 = A0w
2
0

Weight deficit ζ =
∫

A
g′ dA = g′

0

∫
A

c dA ζ0 = A0g
′
0

Buoyancy β = g′
0

∫
A

(cw + c′w′) dA= λBg′
0

∫
A

cw dA β0 = g′
0µ0

Kinetic energy for mean motion ε =
∫

A
wω dA= λE

∫
A

1
2
w3 dA ε0 = 1

2
A0w

3
0

Kinetic energy f-terms εf =
∫

A
f dA εf 0 = 0

Table 1. Kinematic fluxes and their initial values for vertical buoyant jets.

and tracer fluxes due to turbulence fluctuations of w, u and c; ω = (w2 + u2)/2 is
the kinetic energy for the mean motion based on mean velocities; and f represents
the remaining terms of the conservation of the mean kinetic energy equation. The
following boundary conditions have to be satisfied,

for r = 0 u = 0, w = wm, c = cm, τzr = 0, u′c′ = 0, f = 0,

for r → ∞ u = u∞, w = 0, c = 0, τzr = 0, u′c′ = 0, f = 0,

}
(2.5)

and the integral method, with the similarity assumption, which is well substantiated
in the zone of established flow (ZEF), is used in this work to reduce the four partial
differential equations to four ordinary differential equations. Under this assumption,
one scale for a mean flow variable φ (mean axial velocity w or mean concentration c)
and one scale for the lateral length b are sufficient to make the dimensionless
expressions of the mean flow variables unique functions of a geometrical variable
only. The centreline value of the corresponding variable and the nominal lateral width
bφ are selected as the reference values, and the similarity function is well represented
by the Gaussian distribution (Reichardt 1941; Albertson et al. 1950; Rouse, Yih
& Humphreys 1952; Papanicolaou & List 1988; Jirka 2004) in both round (three-
dimensional) and plane (two-dimensional) geometries. Therefore, the dimensionless
mean axial velocity and concentration profiles may be expressed as,

φ

φm

= exp

(
− r2

b2
φ

)
, (2.6)

where r2 = x2+iy2 (when i = 0, r ≡ x is the transverse distance and when i = 1, r is the
radial distance); and the lateral width bφ is the length scale of property φ defined by
the point on the profile at which the value is 1/e times the maximum value (figure 1).
For the limiting cases of simple jets and pure plumes, where self-similarity holds,
bφ is proportional to the axial distance z (bφ = Kφz, where Kφ is the spreading rate
coefficient); however, this is not generally true for buoyant jets, where the spreading
coefficient may vary with distance z (NY; Papanicolaou & List 1988; Wang & Law
2002).

The kinematic fluxes normalized by their initial values at the jet exit are defined
in table 1 and are useful in the integral method and for dimensional considerations.
The following notes should be used in conjunction with this table: g′ = g′

0c;
c0 = 1; for i = 0, slot width D and flow cross-sectional area per unit slot length A,
dA/A0 = 2dx/D = 2dnx; for i = 1, nozzle diameter D and flow cross-sectional
area A, d A/A0 = 4dr2/D2 = 4dn2

r ; A0 = (π/4)iD1+i; nx = x/D and nr = r/D are



Integral model for plane and round buoyant jets 271

non-dimensional distances from the jet centreline in the x and r directions; and
subscript 0 denotes value at the jet exit.

For a buoyant jet, the flow is determined uniquely by the three initial fluxes of
volume µ0, momentum m0 and, buoyancy β0, and the vertical distance z from the jet
exit, which form a set of four independent variables; a completely equivalent set of
independent variables are the characteristic length scale D, the exit jet velocity w0,
the apparent acceleration due to gravity g′

0, and the distance z. Both sets contain only
kinematic dimensions, and formal dimensional analysis would indicate that there
are only two truly independent dimensionless groups, which may be formed from
the two sets of variables. Selecting the first set, the two groups are R0 = µ

(3+i)/(1+i)
0

β0m
−(3+2i)/(1+i)
0 and z/Lm, where R0 is defined as the initial Richardson number

and Lm is the characteristic length scale defined by Fischer et al. (1979) as
Lm =m0β

−2/3
0 when i = 0 and Lm = m

3/4
0 β

−1/2
0 when i = 1; and using the second set,

they are F0 = w0(g
′
0D)−1/2 and Z = (z/D)F −4/(3+i)

0 , where F0 is the initial densimetric

Froude number. It must be noted that R0 = (π/4)i/2F −2
0 , Lm = D(π/4)i/4F 4/(3+i)

0 and
z/Lm =(π/4)−i/4Z; therefore, the variations of mean flow and mixing quantities can
be completely presented in terms of Z and F0, or alternatively z/Lm and F0, as the
non-dimensional independent variables.

2.2. Integration of equations

Using the prescribed boundary conditions (2.5) and Gaussian distribution profiles
(2.6), the four partial differential equations (2.1) to (2.4) are integrated on the jet
cross-section, and the following set of ordinary differential equations is derived:

dµ

dz
=

d

dz

[(√
π bw

)1+i
wm

]
= −2(πbw)iue, (2.7)

dm

dz
=

d

dz

[
λM

(√
π/2 bw

)1+i
w2

m

]
= ζ = g′

0(
√

π bc)
1+icm, (2.8)

d

dz

(
β

g′
0

)
=

d

dz


λB

(
√

π
bwbc√
b2

w + b2
c

)1+i

wmcm


 = 0, (2.9)

dε

dz
=

d

dz

[
1
2
λE(

√
π/3 bw)1+iw3

m

]
= β0 − (πr∞)iu3

∞ − εf , (2.10)

where µ, m, ζ , β and ε are the volume, momentum, weight deficit, buoyancy and
kinetic energy fluxes for the mean motion, respectively, defined in table 1; the (πr∞)iu∞
value has been replaced by (πbw)iue in (2.7) to keep the entraining volume constant,
thus u∞ =(bw/r∞)ue; ue and u∞ are transverse mean velocities at distances bw and
r∞ from the jet centreline; r∞ ≈ 0.18z is the entire width of the round buoyant
jet, which is taken approximately equal to the optical boundary (NY); bw and
bc are nominal lateral widths for the velocity and concentration fields; λM and
λB are factors, considered variable from jets to plumes, used to account for the
turbulent flux contributions in momentum and buoyancy, while λE is a factor for
the mean cross-stream velocity contribution in the kinetic energy flux for the mean
motion.

Following the spreading concept previously described, (2.9) is integrated with respect
to z taking into consideration the corresponding flux definition (table 1) and then
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solved for cm to obtain:

cm = λ−1
B

(
π

bwbc

2

)−(1+i)/2

Yµ0w
−1
m , (2.11)

where Y =[(b2
w + b2

c )/(2bwbc)]
(1+i)/2 = [(K2

w + K2
c )/(2KwKc)]

(1+i)/2 is a function of the
spreading coefficients; bφ =Kφz (φ ≡ w or φ ≡ c) and Kφ is generally a function of
z for prescribed initial conditions. Replacing this expression of cm in the momentum
equation (2.8), integrating in the ZEF between ze and z > ze (ze approximates the
core length), or equivalently between Ze and Z (Ze is the value of Z at the core end),
dividing both sides of the resulting equation by m

3/2
0 (where m0 is the initial momentum

at the jet exit, table 1), and solving for the velocity ratio wm/w0, irrespective of the
variation of bw with z or Z, the following expression is obtained,

wm

w0

=
2−i/2

√
λM

(π

2

)(i−1)/4
(

bw

D

)−(1+i)/2
[
M1 + 3

2
2i/2

(
π

2

)(1−i)/4

F
(
Z(3+i)/2

)]1/3

(2.12)

after the following substitutions were made:

F
(
Z(3+i)/2

)
=

∫ Z

0

f
(
Z(1+i)/2

)
dZ, f

(
Z(1+i)/2

)
=

λ
1/2
M

λB

Y (2KcZ)(1+i)/2, (2.13)

M1 =

(
me

m0

)3/2

− 3
2
2i/2

(π

2

)(1−i)/4

F
(
Z(3+i)/2

e

)
, (2.14)

where F (Z(3+i)/2) is the integral function of f (Z(1+i)/2), giving the integral of the
function from 0 to Z; me is the momentum flux at ze; λM and λB are factors
introducing the turbulent flux contribution into momentum and buoyancy; and M1

may be considered as the zone of flow establishment (ZFE) memory parameter,
as it carries the ZEF effects. In order to obtain an analytical expression for the
centreline axial velocity distribution from (2.12) and consequently for the centreline
concentration distribution from (2.11), two conditions are required: (a) determination
of M1, or me and Ze, and (b) determination of the function f (Z(1+i)/2). According to
YN and NY, after applying a specific first-order model for the ZFE, the following
functions were found to approximate M1:

for plane buoyant jets (i = 0) and F0 � Fp ≈ 2.65,

M1 = 1 + 1.6F −2
0 , (2.15)

for round buoyant jets (i = 1) and F0 � Fp ≈ 2.50,

M1 = 1 + 3.0F −2
0 , (2.16)

where Fp is the plume-region limiting value of the local Froude number defined below;
in addition, for F0 < Fp values of M1 = 1.23 for plane plumes and M1 = 1.48 for round
plumes have been given. It is noted that the spreading rate coefficients used in the
ZFE model to obtain forms (2.15) and (2.16) were mean values of the corresponding
coefficients valid in the ZEF for jet-like and plume-like behaviour. As shown by
equation (2.12) and approximations (2.15)and (2.16), the memory effect entered by
M1 in the ZEF fades quickly for increasing distances Z > Ze, and because interest
is mainly focused on the ZEF, where the ZFE characteristics play an insignificant
role, the choice of the simplest model for the ZEF simulations seems to be preferable.
Although alternative ZFE models could be used with SOA, the suggested model is
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Jet Plume

Authors Kwj Kcj λj Kwp Kcp λp

Plane
Ramaprian & Chandrasekhara (1985) 0.135 0.201 1.49
Ramaprian & Chandrasekhara (1989) 0.132 0.160 1.21

Round
Noutsopoulos & Yannopoulos (1987) 0.100 0.120 1.20 0.120 0.120 1.00
Papanicolaou & List (1988) 0.104 0.126 1.21 0.105 0.112 1.07
Shabbir & George (1994) 0.131 0.121 0.92
Webster, Roberts & Ra‘ad(2001) 0.107 0.140 1.31
Wang & Law (2002) 0.106 0.129 1.22 0.105 0.109 1.04

Table 2. Values of Kw , Kc and λ= bc/bw = Kc/Kw for round and plane jets and plumes
based on experiments conducted during the last two decades.

compatible with the results obtained by application of non-dimensional analysis to
the ZEF, where the non-dimensional mean flow and mixing properties depend on
both Z and F0; for engineering purposes (when z/D � 10), where M1 contributes
very little to the variation of axial velocity and concentration distributions, M1 ≈ 1.
The determination of the function f (Z(1+i)/2) is given in the following section.

2.3. Sensitivity analysis

Applying the identity,

(bw − bc)
2 = b2

w + b2
c − 2bwbc, (2.17)

and rearranging terms with regard to equations (2.11) and (2.13), the following forms
are derived:

Y =

(
b2

w + b2
c

2bwbc

)(1+i)/2

=

(
K2

w + K2
c

2KwKc

)(1+i)/2

=

(
1 + λ2

2λ

)(1+i)/2

=

[
1 +

(1 − λ)2

2λ

](1+i)/2

(2.18)

where λ= bc/bw = Kc/Kw varies from jet to plume behaviour, as shown in table 2.
It is observed that the right-hand side of (2.18) can be approximated to unity;
consequently,

Y =

(
b2

w + b2
c

2bwbc

)(1+i)/2

=

(
K2

w + K2
c

2KwKc

)(1+i)/2

∼= 1, (2.19)

and the error introduced by approximation (2.19) is Yer = [1+0.5λ−1(1−λ)2](1+i)/2 −1.
Noting that λ= 1 + ε (where 0 � ε < 1) Yer ∼ O(ε2), indicating the small error
committed by this approximation; in fact, according to values of λ reported in
table 2, the maximum error that could be introduced in (2.18) would be 4.0 %, and
since these errors are very small, approximation (2.19) may be adopted at least for
FOA modelling. It should also be noted that use of this assumption is not necessary in
the computation process of SOA and, according to Wang & Law (2002), for second-
order approximations, factor λM remains essentially constant (λM ≈ 1.1) for round
buoyant jets; the same value is taken for plane buoyant jets, as it can be deduced
from the plane turbulent jet measurements of Ramaprian & Chandrasekhara (1985).
Factor λB may be calculated according to Wang & Law (2002) by the relationship:

λB = λBj −
(
λBj − λBp

) R

Rp

, (2.20)



274 P. C. Yannopoulos

where R is the local Richardson number defined in a following section and Rp is its
limiting value in the plume region; according to Ramaprian & Chandrasekhara
(1985, 1989) and Wang & Law (2002), λBj = 1.04 and 1.076 for plane and
round jets, while λBp = 1.18 and 1.15 and Rp = 0.28 ± 0.04 and 0.341 for plane
and round plumes, respectively. A similar form of interpolation is followed for the
concentration-to-velocity width ratio λ= Kc/Kw , which according to Wang & Law
(2002) is given by the relationship:

λ =
Kc

Kw

= λj − (λj − λp)

(
R

Rp

)3/4

, (2.21)

where λj = 1.50 and 1.23, for plane and round jets, and λp = 1.21 and 1.04, for plane
and round plumes. It should be observed that these measurements verify that Kw ≈
0.132 and 0.11 for plane and round buoyant jets, constant from jet-like to plume-like
behaviour. It is also evident that λB and λ can be iteratively calculated using (2.20)
and (2.21) as functions of the local Richardson number R, which is known at a
particular axial distance for given values of µ, m and β , or equivalently for wm and
cm, assigning λB and λ values from a previous iteration. Therefore, to enable the
calculation of λB and λ employing these functions, the FOA solutions given below
for λM = λB = 1 are implemented in order to find a first approximation of R; this in
turn serves for the determination of the values of λB , λ and a new R. The procedure
converges quickly, requiring only three iterations, as the second value of R coincides
with the correct R. All results in the present study have been obtained using simple
programming in Microsoft Excel, without noticeable runtime required. In the case of
the FOA, turbulent contributions in momentum and tracer fluxes are ignored, thus
λM = λB = 1. YN and NY have defined the parameter γ as,

γ =

(
K2

w + K2
c

Kw

)(1+i)/2

(2.22)

and based on centreline mean axial velocity and mean concentration measurements,
NY have found that the variations of γ and the concentration spreading coefficient
Kc were small; this finding has also been verified by an extended review of the
literature. Consequently, constant values of γ = 0.24 and Kc ≈ 0.12 have been
considered pertinent for practical applications in round buoyant jets. Analysis of
experimental data for a plane buoyant jet obtained by Kotsovinos (1975), made by
YN in conjunction with extended reviews, has indicated again that γ and Kc remain
essentially constant and the values γ ≈ 0.6 and Kc = 0.173 have been suggested for
use in practical applications for the entire buoyancy region.

Consideration of (2.19) and (2.22) yields,

γ ∼= (2Kc)
(1+i)/2, (2.23)

which interprets the physical significance and behaviour of γ ; this equation connects
present and previous findings, which are in complete agreement for both plane and
round buoyant jets. For the FOA when λM = λB =1, use of (2.19) and (2.23) into
(2.13) gives:

f
(
Z(1+i)/2

) ∼= γZ(1+i)/2. (2.24)

It should be noted that the spreading parameters calculated by NY and YN, which
satisfy the conservation constraints, enhance an effect due to omission of the turbulent
flux contribution in the integral momentum and mass conservation equations and
therefore values obtained by these workers differ slightly from those measured
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Plane Round

Parameter Jet Plume Jet Plume Equation

First-order approach (FOA)
λM 1.0 1.0 1.0 1.0
λB 1.0 1.0 1.0 1.0 (2.20)
λ= Kc/Kw 1.31 1.31 1.20 1.00 (2.21)
Kw 0.132 0.132 0.100 0.120
Kc 0.173 0.173 0.120 0.120 (2.21)

Second-order approach (SOA)
λM 1.1 1.1 1.1 1.1
λB 1.04 1.18 1.076 1.15 (2.20)
λ= Kc/Kw 1.50 1.21 1.23 1.04 (2.21)
Kw 0.132 0.132 0.110 0.110
Kc 0.198 0.160 0.135 0.114 (2.21)

Table 3. Values of input parameters involved in application of FOA and SOA for plane and
round turbulent buoyant jets.

directly using more accurate techniques (Ramaprian & Chandrasekhara 1985, 1989;
Papanicolaou & List 1988; Wang & Law 2002). Recommended input values to be
assigned to parameters regarding turbulent flux contribution and spreading rates for
the FOA and SOA integral models proposed in this paper are summarized in table 3.

2.4. Final integration in the ZEF

In the more general case of a SOA, factors λM and λB are calculated as previously
described and accurate integral calculation based on equations (2.13) is employed;
however, in the case of an FOA, when the concentration spreading coefficient Kc might
be considered constant and factors λM = λB = 1, the integral function F (Z(3+i)/2) could
be determined with the aid of (2.24) and taken as:

F
(
Z(3+i)/2

) ∼=
2γ

3 + i
Z(3+i)/2. (2.25)

In addition, defining the profile of the tracer or buoyancy flux T ≡ wc according to
(2.6) (where T replaces φ), computing flux β and adopting (2.19), it is found that
β = λB(

√
π bT )1+ig′

0wmcm
∼= λB(

√
πbwbc/2)1+ig′

0wmcm. Thus, for the FOA, the nominal
width of the tracer or buoyancy flux may be estimated on the basis of velocity and
concentration widths bw and bc according to the following relationship:

bT
∼=

√
bwbc

2
. (2.26)

2.5. Centreline axial velocity and concentration distributions

The proposed solutions are provided in forms similar to those given by NY for round
buoyant jets and YN for plane buoyant jets, in order to facilitate direct comparison.
In synoptic presentation and irrespective of the variation of bw and Kw with z, these
solutions are:

wm

w0

F
2(1+i)/(3+i)
0 =

2−i/2

√
λM

(
π

2

)(i−1)/4

(KwZ)−(1+i)/2

[
M1 + 3

2
2i/2

(
π

2

)(1−i)/4

F
(
Z(3+i)/2

)]1/3

(2.27)
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where Z = (z/D)F −4/(3+i)
0 , F0 =w0(g

′
0D)−1/2, Y = [(1 + λ2)/(2λ)](1+i)/2 and λ=Kc/Kw;

it should also be noted that
√

m0

z(1+i)/2wm

=
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[
wm
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0
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√
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(π/4)i/2
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[
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0
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.

The functions F (Z(3+i)/2) and M1 are given by equations (2.13) and approximations
(2.15) and (2.16). The spreading rate coefficients Kw , Kc, λ and the coefficients λM and
λB are presented in table 3 in conjunction with (2.20) and (2.21). In the case of an FOA,
when λM = λB = 1, owing to approximations (2.19), (2.23), (2.24) and (2.25), solutions
(2.27) and (2.28) are explicit and constitute simple analytical expressions defining
uniquely the axial velocity and concentration distributions along the centreline of a
plane and round buoyant jet; they were produced as a result of direct integration
of the governing differential equations of momentum and tracer in conjunction with
experimental evidence. These solutions, can also be employed to boost second-order
solutions using (2.27) and (2.28) with the aid of (2.13), (2.15), (2.16), (2.20) and (2.21)
and selecting from table 3 pertinent values of coefficients involved, as follows:

For plane buoyant jets (i = 0) and M1 as given by (2.15); for SOA Kw =0.132,
Kc = λKw , λM ≈ 1.1 and factors λB and λ as given by (2.20) and (2.21), respectively;
for FOA λM = λB = 1, Kw = 0.132, Kc =0.173 (table 3).

For round buoyant jets (i =1) and M1 as given by (2.16); for SOA, Kw =0.11,
Kc = λKw , λM ≈ 1.1 (table 3) and factors λB and λ as given by (2.20) and (2.21),
respectively; for FOA λM = λB = 1 and Kw as given by the empirical relationship
Kw = 0.12 − 0.02 exp(−0.05Z2) suggested by NY.

It must be noted that the solution for the mean concentration distribution
in the centreline of round buoyant jets is qualitatively similar to the semi-
empirical expressions proposed by Kotsovinos (1978, 1985) for mean centreline excess
temperatures of turbulent round plumes. However, considering the experimental
measurements initially reported by Noutsopoulos, Hatzicomninou & Yiannopoulos
(1979) and later by NY, the relationships proposed by Kotsovinos underestimate the
centreline concentrations by more than 15 % in the plume-like region and even more
in the jet-like region.

The forms and coefficients of the limiting cases of the centreline mean axial
velocities and mean concentrations for round and plane buoyant jets are presented
in table 4. The analytical solutions given by the functional forms (2.27) and (2.28)
are compared in figures 2(a) and 2(b), giving the centreline mean axial velocity and
mean concentration distributions of a plane buoyant jet and in figures 3(a) and 3(b)
showing similar data for a round buoyant jet. It should be noted that, without loss
of generality, the FOA and SOA solutions illustrated in these figures concern specific
values of the initial Froude number (i.e. F0 = 2.5, 25, 50 and 100 or greater) for
non-dimensional axial distances z/D � 7. Under these conditions, the effect of the
ZFE on the ZEF behaviour is enhanced in the M1 parameter and becomes noticeable,
as the solutions deviate from the standard curves taken for M1 = 1 (or large values
of F0). These curves correspond to the limit line, where curves of different Froude
number tend to coincide; this line is termed standard behaviour and is characterized
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Jet-like flows (Z → 0) Plume-like flows (Z → ∞)
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Table 4. Forms of the centreline axial velocities and centreline concentrations in the limiting
cases of plane and round turbulent buoyant jets. Subscripts j and p denote values at jet- or
plume-like behaviour, respectively.

by a completely lost memory of initial buoyant jet characteristics transferred by M1.
Comparison between the FOA and SOA solutions proposed herein would show that,
as expected, there are only quantitative differences. Figures 2(a) and 2(b) show that
the FOA solution compared to the SOA solution for z/D � 7 over-predicts mean
axial velocities and mean concentrations along the plane buoyant jet centreline from
about 4 % and 2 % in the jet-like region up to 10 % and 5 % in the plume-like region,
respectively. Similarly, figures 3(a) and 3(b) show that the FOA solution compared to
the SOA solution over-predicts mean axial velocities and mean concentrations along
the round buoyant jet centreline from about 15 % and 13 % in the jet-like region
down to −2 and 0 % in the plume-like region, respectively.

An overall assessment of the proposed SOA behaviour for round buoyant jets is
made in figures 4(a) and 4(b), where the SOA distributions of mean axial velocities
and mean concentrations along the jet centreline are compared to empirical second-
order approximations given by Wang & Law (2002) and experimental measurements
conducted by Papanicolaou & List (1988) for velocities and Papanicolaou & List
(1987) for concentrations. These distributions fit well with the experimental data
and actually coincide with the results of the empirical model, since over-predictions
less than 5 % and 9 % are observed for velocities and concentrations, respectively.
Because of lack of adequate reliable velocity and concentration data for plane buoyant
jets, an overall assessment of the proposed SOA behaviour for plane buoyant jets,
will be made in a later section regarding bulk dilution, together with an additional
confirmation of the findings for round buoyant jets.

Comparing the proposed expressions for the FOA solutions to corresponding
values reported by YN and NY, for plane and round buoyant jets, respectively,
it is observed that the data coincide both qualitatively and quantitatively. The
empirical constant γ defined and determined by YN and NY using experimental axial
velocity and concentration measurements (γ ≈ 0.6 ± 0.053 and γ = 0.24 ± 0.0157
(mean ± standard deviation) for plane and round buoyant jets, respectively)
should be replaced by the corresponding quantities

√
2Kc =

√
2 × 0.173 ∼= 0.59 and

2Kc =2 × 0.12 =0.24, according to approximation (2.23). Therefore, the physical
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and (b) mean concentration, as functions of Z = (z/D) F

−4/3
0 and F0 using FOA and SOA

solutions.

significance of γ is delineated by the proposed FOA procedure, which constitutes an
improved modification of the integration procedure and leads to exactly the same
findings; it should be noted that YN and NY have made an extensive comparison
of the limiting behaviour of the above expressions with other works reported in the
literature and have concluded that an overall agreement existed.

An estimate of the accuracy of the proposed FOA and SOA solutions in the limiting
behaviours can additionally be made by computing the relative difference of each
proposed parameter A and B value from the related average value derived from
measurements found in the literature; studies conducted in the last two decades using
advanced techniques, which yielded more reliable data, are used. These differences
are then normalized by dividing them with the latter average value, which is assumed
to be a priori correct, and the result that gives a measure of the errors made is
expressed as a percentage and presented in table 5 for plane jets and plumes and
in table 6 for round jets and plumes. An evolution of the values given in tables 5
and 6 confirms that the SOA solutions are more accurate than the FOA solutions,
as their maximum relative deviations from experimental average values remain less
than 7.4 % compared to 14.2 % for the FOA solutions. However, both solutions have
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solutions.

maximum absolute errors less than 10 % for plane jets and plane and round plumes,
and only for round jets do the FOA solutions deviate more than 10 %.

3. Application to relevant quantities
Equations (2.27) and (2.28), which concern the centreline axial velocity and

concentration distributions for the turbulent round and plane buoyant jet, will be used
in the following sections for the determination of the variation of the local Richardson
and Froude numbers, bulk dilution, dilution ratio, entrainment coefficient, transverse
component of mean velocity and kinetic energy flux for the mean motion.
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experimental measurements by Papanicolaou & List (1987, 1988) (P&L).

3.1. Local Richardson and Froude numbers

Applying dimensional analysis, the following general relationship for the local
Richardson number for plane and round buoyant jets is obtained,

R =
µ(3+i)/(1+i)β

m(3+2i)/(1+i)
(3.1)

where µ = (
√

π bw)1+iwm, m = λM (
√

π/2 bw)1+iw2
m and β = λB(πbwbc/2)(1+i)/2g′

0wmcm/Y

are the volume, momentum, and buoyancy fluxes. By substituting these fluxes in (3.1),
introducing the centreline velocity and concentration variables from (2.27) and (2.28),
and making pertinent manipulations, the following final form is derived for the local
Richardson number:

R = λ
−(3+i)/2/(1+i)
M

(
2√
π

)i

(
√

2π KwZ)(3+i)/2
[
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(
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) ]−1
.

(3.2)



Integral model for plane and round buoyant jets 281

Jet Plume

Author Aj Bj D(cm) Re × 10−3 Ap Bp

Present study
FOA 2.46 2.15 2.14 2.47
Derivation from experimental average value (%) 7.7 4.9 2.6 2.1
SOA 2.34 2.11 1.94 2.42
Derivation from experimental average value (%) 2.5 2.9 −7.0 0.0

Experimentally measured values
Ramaprian & Chandrasekhara (1985) 2.44 2.27 0.50 1.5
Ramaprian & Chandrasekhara (1989) 2.13 2.56
Thomas & Chu (1989) 2.13 1.27 8.3
Dracos et al. (1992) 2.28 1.00 10
Yuan & Cox (1996) 2.04 2.60
Sangras, Dai & Faeth (1998) 2.10
Chen & Jirka (1999) 1.83 1.00 10
Average value 2.28 2.05 2.09 2.42

Table 5. Evaluation of parameter A and B values for plane turbulent buoyant jets based on
experiments conducted during the last two decades.

Jet Plume

Author Aj Bj D(cm) Re × 10−3 Ap Bp

Present study
FOA 7.07 5.89 3.73 9.30
Derivation from experimental 10.1 14.2 1.4 −2.5

average value (%)
SOA 6.13 5.20 3.71 9.32
Derivation from experimental −4.6 0.8 0.8 −2.3

average value (%)

Experimentally measured values
Papanicolaou & List (1987) 5.37 0.75–2.00 1.7–17 9.46
Papanicolaou & List (1988) 6.71 0.75 1.8–11 3.55
Dahm & Dimotakis (1990) 5.40 0.25 1.5–20
Panchapakesan & Lumley (1993) 6.06 0.61 11
Weisgraber & Liepmann (1998) 6.67 2.54 16
Webster et al. (2001) 6.20 5.00 0.31 3.0
Wang & Law (2002) 6.48 5.26 0.45–0.94 6.0–13 3.81 9.62
Tian & Roberts (2003) 5.00 0.40 2.6
Average value 6.42 5.16 3.68 9.54

Table 6. Evaluation of parameter A and B values for round turbulent buoyant jets based on
experiments conducted during the last two decades.

For both FOA and SOA solutions and for either plane or round buoyant jets,
the variation of the local Richardson number R with respect to z/Lm is shown in
figures 5(a) and 5(b), respectively. It is observed that both models produce comparable
results and the maximum FOA overestimation compared to SOA results is about
16 % for both plane and round buoyant jets. In addition, for round buoyant jets,
R is compared to the corresponding variation given by Wang & Law (2002), which



282 P. C. Yannopoulos

100

10–1

10–2

100

10–1

10–2

10–1 100 101 102

10–1 100 101 102

R

FOA

SOA

F0 = 50, 100

F0 = 2.5

(a)

(b)

z/Lm

R

FOA
SOA
W&L

F0 = 50, 100

F0 = 2.5
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solutions for (a) plane buoyant jets and (b) round buoyant jets compared to the empirical
second-order model by Wang & Law (2002) (W&L).

agrees very well with both proposed variations in the jet-like region and especially
with R obtained by the SOA in the plume-like region. The limiting value Rp of the
Richardson number in the plume-like case is taken from (3.2) for Z → ∞:

Rp = λBpλ
− (2+i)/(1+i)
M Y −1

p

3 + i

3

√
2π

Kwp

λ
(1+i)/2
p

, (3.3)

where index p denotes values at the plume-like behaviour. The jet-like behaviour of
the Richardson number is taken for Z → 0 and M1 = 1 as,

Rj = λ
− (3+i)/2/(1+i)
M

(
2√
π

)i

(
√

2π KwjZ)(3+i)/2, (3.4)



Integral model for plane and round buoyant jets 283

where index j denotes values for jet-like behaviour. The local Richardson and Froude
numbers are linked together through the following relationship:

RF 2 = λBλ
− (3+2i)/(1+i)
M Y −12i/2

√
π λ(1+i)/2, (3.5)

and the local Froude number F is defined on the jet centreline in accordance to the
initial Froude number,

F =
wm√
g′

m2bw

(3.6)

where g′
m = g′

0cm is the local apparent acceleration due to gravity; and 2bw is the
local nominal width of the flow field used instead of the exit size D in the initial
Froude number. For plumes, the limiting values of the local Richardson and Froude
numbers, using (3.3) and (3.5) with parameter values from table 3, are:

plane buoyant jet
FOA Rp = 0.2891 and Fp = 2.65,

SOA Rp = 0.2907 and Fp = 2.43,

round buoyant jet
FOA Rp = 0.4011 and Fp = 2.50,

SOA Rp = 0.3521 and Fp = 2.59.

Physically, the limiting Rp or Fp values reflect the equilibrium condition of buoyant
to inertial forces. At this location, the initially accelerated plume has obtained its
maximum axial velocity, while it is decelerated downstream. For plane plumes, the
values of Rp , determined on the basis of the proposed solutions, are found to be about
equal to the value Rp = 0.28 ± 0.04 determined by Ramaprian & Chandrasekhara
(1989). The corresponding value based on measurements by Kotsovinos (1975) and
reported by Fischer et al. (1979) is Rp =0.7353/2 = 0.63; this value is about twice as
great as the value given by Ramaprian & Chandrasekhara (1989) and might have
resulted from systematic measurement errors in the plane plume region causing a
considerable velocity underestimation (see also figure 6 in YN). For round plumes,
the values of Rp , determined on the basis of the proposed solutions, are found to
be very close to the value Rp = 0.5842 = 0.341 determined by Wang & Law (2002),
slightly larger than the value 0.5572 = 0.310 proposed by Fischer et al. (1979), and
considerably lower than the value 0.7162 = 0.513 determined by Papanicolaou & List
(1988). However, Papanicolaou & List (1988), noting that the technique used for
concentration measurements had introduced systematic errors yielding about 22 %
[(0.09 − 0.07)/0.09] lower values, made a correction according to their previous
concentration measurements (Papanicolaou & List 1987), and calculated a new value
Rp = (0.716 × 0.07/0.09)2 = 0.5572 = 0.310; the revised value coincides with the value
proposed by Fischer et al. (1979).

3.2. Dispersion ratio

The concentration-to-velocity width ratio or dispersion ratio is defined according to
(2.21) for either plane or round buoyant jets, and the limiting values of λ that are used
in (2.21) for both approaches are given in table 3. It is noted that for the FOA of round
buoyant jets, Kw is given by the empirical relationship Kw = 0.12 − 0.02 exp(−0.05Z2)
suggested by NY. For both approximations, the variation of λ with respect to R is
given in figures 6(a) and 6(b) for plane and round buoyant jets, respectively. The
variation of λ is independent of the F0 variation for plane buoyant jets, but depends
on F0 for round buoyant jets using FOA data only. For plane buoyant jets, the SOA
shows appreciable differences in λ (from 8% to 12 %) from the FOA for increasing
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and (b) round buoyant jets compared to values by Wang & Law (2002) (W&L).

R. For round buoyant jets, both approaches show comparable values of λ, which are
also quite close to the values given by Wang & Law (2002) (the maximum differences
are less than 3 %). Chu, Lee & Chu (1999) have determined experimentally the value
of λ= 1.2 for a turbulent round jet in coflow, which coincides with the value obtained
herein by the FOA for round jets and is very close to that given by the SOA.

3.3. Bulk dilution

The bulk dilution can be defined as,

S =
µ

µ0

, (3.7)

where µ = (
√

π bw)1+iwm and µ0 = (π/4)i D1+iw0. After substituting these fluxes into
(3.7) and taking into consideration equations (2.27) and (2.28), the bulk dilution can
be expressed as,
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−2(1+i)/(3+i)
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)(1+i)/2
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2(1+i)/(3+i)
0

]−1
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or, equivalently,
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)1+i/2
Y

λB

c−1
m ,




(3.8)

where i = 0 for plane buoyant jets and i =1 for round buoyant jets. The variation of
the bulk dilution with respect to Z is shown in figures 7(a) and 7(b) for plane and
round buoyant jets, respectively; it compares well with experimental data available in
the literature and seems to be independent of the M1 variation. The maximum FOA
overestimations from SOA results observed are about 10 % and 19 % for plane and
round buoyant jets, respectively; in addition, the bulk dilution obtained using the SOA
solutions compares better to experimental measurements reported by Kotsovinos &



Integral model for plane and round buoyant jets 285

101

100

10–1

10–2

10–3 10–2 10–1 100 101 102

102

101

100

10–1

10–2

10–2 10–1 100 101 102

102

103

S
F

0–2
/3

FOA

SOA

K&L

R&Ch

F0 = 50, 500

F0 = 2.5

(a)

(b)

Z

S
/F

0

FOA

SOA

P&L

Figure 7. Normalized bulk dilution as a function of Z and F0 using FOA and SOA
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(R&Ch) and (b) round buoyant jets compared to experimental measurements by Papanicolaou
& List (1988) (P&L).

List (1977) and Ramaprian & Chandrasekhara (1983) for plane buoyant jets and by
Papanicolaou & List (1988) for round buoyant jets.

The limiting forms of the bulk dilution for plane and round buoyant jets are given
in table 7. In conjunction with parameter values given in table 3, the values computed
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Parameter description Plane (i = 0) Round (i = 1)
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f -kinetic energy term for
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]
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Table 7. Forms of several parameters in the limiting cases for plane and round turbulent
buoyant jets. Subscripts j and p denote values at jet- or plume-like behaviour, respectively;
ε0 =β0F

2
0 D/2.

are for plane jets (i = 0, Z → 0) Γj = 0.575 and 0.548 and for plane plumes (i =0,
Z → ∞) Γp = 0.500 and 0.454 for the FOA and SOA solutions, respectively. Fischer
et al. (1979) have suggested Γj = 0.5 ± 0.02 for plane jets, which is very close to
the present findings, and a rather underestimated value Γp = 0.34 for plane plumes.
Similarly, the values are for round jets (i = 1, Z → 0) Γj = 0.283 and 0.297 and for
round plumes (i = 1, Z → ∞) Γp = 0.215 and 0.179 for the FOA and SOA solutions,
respectively. Fischer et al. (1979) have suggested Γj = 0.25 ± 0.001 for round jets
and Γp = 0.15 ± 0.015 for round plumes, which are somewhat lower than the values
obtained in the present study. Papanicolaou & List (1988) have measured Γj = 0.284
for pure round jets and Γp = 0.164 for round plumes, in very close agreement with
the predictions by the proposed SOA. It is noted that the parameters Γj and Γp are
defined in table 7 for each particular case.
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3.4. Dilution ratio

The dilution ratio is defined according to Fischer et al. (1979) as,

cm

Cav

=
cm

c0

S, (3.9)

where Cav = c0µ0/µ= c0/S and c0 = 1 for the present work. Substituting cm from
(2.28) and S from (3.7), (3.9) finally results in the simple relationship,

cm

Cav

=
Y

λB

(
2

λ

)(1+i)/2

, (3.10)

which can be further simplified in dedicated forms for:

plane buoyant jets (i = 0)

cm

Cav

=
Y

λB

(
2

λ

)1/2

, (3.11)

round buoyant jets (i = 1)

cm

Cav

=
2Y

λBλ
. (3.12)

The limiting forms of the dilution ratio for plane and round buoyant jets are given
in table 7. In conjunction with parameter values given in table 3, the values computed
are for plane jets (i = 0, Z → 0) (cm/Cav)j = 1.24 and 1.16 and for plane plumes
(cm/Cav)p = 1.24 and 1.10 for the FOA and SOA solutions, respectively, and, as can
be seen, the dilution ratio obtained by each approach remains constant for the entire
buoyancy region. Related values suggested by Fischer et al. (1979) are 1.2 ± 0.1 for
plane jets and 0.81 ± 0.1 for plane plumes; however, the latter value which was based
on the Kotsovinos (1975) measurements was characterized by Fischer et al. (1979)
as a ‘curious result’, and these measurements underestimated significantly the axial
velocities and bulk dilution (figure 7a). Values computed for round jets (i = 1, Z → 0)
are (cm/Cav)j = 1.67 and 1.54 and for round plumes (cm/Cav)p = 2.00 and 1.67 for
FOA and SOA solutions, respectively. These values are higher than the value 1.4 ± 0.1
suggested by Fischer et al. (1979) for both cases, however, data by Papanicolaou &
List (1988) support present findings well enough, as they give cm/Cav = 1.71 and 1.70
for round jets and plumes, respectively. The experimentally determined value of Chu
et al. (1999) for a turbulent round jet in coflow is about 1.66, while Roberts, Snyder &
Baumgartner (1989) measured the value of 2.0 for a three-dimensional diffuser field
of mixing in a current.

3.5. Entrainment coefficient

The entrainment coefficient can be evaluated by the continuity equation (2.7),
introducing the ‘jet entrainment hypothesis’ established by Morton et al. (1956),
according to which,

ue = − awm, (3.13)

where a is the entrainment coefficient; substituting ue into (2.7), the following
relationship is obtained:

dµ

dz
=

d

dz

[(√
πbw

) 1+i
wm

]
= 2(π bw) iawm. (3.14)
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Solving (3.14) for a and making pertinent manipulations, the following expression
results:

a =
1 + i

2
π(1−i)/2 dbw

dz
+ 1

2
π(1−i)/2 bw

wm

dwm

dz
= 1

2
π(1−i)/2Kw (1 + i + si), (3.15)

where the logarithmic slope of the centreline decay of the mean axial velocity si is
derived using (2.27) and (3.2) and has the following form:

si =
z

wm

dwm

dz
= −1 + i

2
+

λ
(2+i)/(1+i)
M

2
√

2πλBKw

Yλ(1+i)/2R. (3.16)

Substituting for si , (3.15) yields:

a =
1 + i

4
π(1−i)/2Kw

[
1 +

1

(1 + i)
√

2π

λ
(2+i)/(1+i)
M

λBKw

Yλ(1+i)/2R

]
. (3.17)

The limiting forms of the entrainment coefficient for plane and round buoyant jets
are given in table 7. In conjunction with the parameter values given in table 3, the
values computed are for plane jets (i = 0, Z → 0) aj = 0.0585 and for plane plumes
(i = 0, Z → ∞) ap = 0.117 for both the FOA and SOA solutions. Similarly, the values
for round jets (i = 1, Z → 0) are aj = 0.050 and 0.055, and for round plumes (i =1,
Z → ∞) ap = 0.100 and 0.0917 for the FOA and SOA solutions, respectively.

For the variation of a with respect to R, Kotsovinos & List (1977) have suggested
that,

a = aj − (aj − ap)
R

Rp

, (3.18)

where aj and ap refer to the jet-like and plume-like behaviour. Owing to the
dependence of λB and λ on R, (3.17) implies that a is a nonlinear function of R

and therefore (3.18) should be considered as an approximation only. This would
mean that the integral models, which use the closing assumption of the entrainment
hypothesis (assuming that a is proportional to R), introduce a priori an inconsistency.
The SOA solution gives less than 4 % and 9% lower values of a compared to FOA
for plane and round buoyant jets, respectively, and the deviations of SOA a values
from data given by Wang & Law (2002) are less than 15 %.

3.6. Transverse component of mean velocity

Assuming that the transverse distribution of the axial velocity component is described
well enough by the Gaussian profile (2.6), continuity equation (2.1) can be integrated
in the transverse direction from 0 to r , giving:

u

wm

= Kw[(1 + i + si)Iin
−i − n exp(−n2)], (3.19)

where si is the logarithmic slope of the centreline decay of the mean axial velocity
defined by (3.16), I0 =

∫ n

0
exp(−t2) dt , I1 = [1 − exp(−n2)]/2 and n= r/bw . Equation

(3.19) gives analytically the profiles of the transverse component of mean velocity
and is valid for the entire buoyancy range and for plane and round vertical buoyant
jet geometries. Plots of these profiles are shown in figures 8(a) and 8(b) for plane
and round buoyant jets, respectively, and, in each diagram, results obtained using
the FOA and SOA solutions are plotted.

For plane jets when s0 = − 1/2, (3.19) results qualitatively in exactly the same form
as the forms reported by Dracos, Giger & Jirka (1992) and Agrawal & Prasad (2003).



Integral model for plane and round buoyant jets 289

Plane plume

–0.05

0

0.05

0.10

0.15

0 1 2 3

u—wm

u—wm

FOA Z = 25–inf SOA Z = 25–inf
5.0 5.0
1.0 1.0
0.5 0.5
0 0

Plane jet

(a)

(b)

Round plume

–0.025

0

0.025

0.050

0.075

n = r/bw

Round jet

0 1 2 3

Figure 8. Transverse distributions of the transverse component of mean velocity normalized
by the centreline axial velocity component as function of n and Z using FOA and SOA
solutions for (a) plane buoyant jets and (b) round buoyant jets.

For plane plumes when s0 = 0, (3.19) again results in the same form as derived by
Agrawal & Prasad (2003), but these investigators have used the value Kw = 0.11 in-
stead of 0.132 used herein; therefore, transverse velocities are underestimated by 20 %,
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compared to the present predictions. Finally, the FOA and SOA predictions compared
to each other coincide almost completely with a maximum deviation of less than 3 %.

For round jets when s1 = − 1, and round plumes when s1 = − 1/3, (3.19) results
qualitatively in exactly the same forms as the related forms reported by Ying et al.
(2004) and Agrawal & Prasad (2003); and the FOA and SOA predictions compared
to each other show small differences (up to 9 %).

3.7. Kinetic energy flux for the mean motion

The kinetic energy flux for the mean motion ε, normalized by its initial value ε0 at
the jet exit, is,

ε

ε0

=

(
4

3

)i (
π

3

)(1−i)/2

λE

(
bw

D

)1+i (
wm

w0

)3

(3.20)

and the factor λE can be computed by the formula:

λE = 1 +

∫
A

(w/wm) (u/wm)2 dA∫
A

(w/wm)3 dA

, (3.21)

where u is the transverse component of mean velocity. The distributions of the
cross-stream velocity have been given in the preceding section and after conducting
pertinent computations using these distributions, it was found that λE varies in the
range from 1 to 1.00226 for plane buoyant jets and from 1 to 1.00144 for round
buoyant jets; thus, the value of λE =1 can be used. Therefore, (3.20) with the aid of
(2.27) finally results in the form:

ε

ε0

F
2(1+i)/(3+i)
0 =

(
4

3

)i (
π

3

)(1−i)/2

K1+i
w Z1+i

[
wm

w0

F
2(1+i)/(3+i)
0

]3

. (3.22)

The variation of the normalized kinetic energy flux for the mean motion is plotted
with respect to Z and for several values of F0 in figures 9(a) and 9(b), for plane and
round buoyant jets, respectively. The maximum FOA overestimations compared to
SOA results are about 35 % and 27 % for plane and round buoyant jets, respectively.
It can be observed from these figures that the kinetic energy flux has its minimum
value at the regions of Z from 0.9 to 1.1 and from 2.1 to 2.4, for plane and round
buoyant jets, respectively. The limiting behaviours of the kinetic energy flux are of
considerable interest, and the limiting forms of the normalized kinetic energy flux for
the mean motion for plane and round buoyant jets are presented in table 7. In the
plume limiting case, the gradient of the kinetic energy flux normalized by the initial
value of the buoyancy flux β0 is constant, as follows:

plane plumes (i = 0, Z → ∞)

dεp

β0dz
= Ep =

Yp√
3

√
λp

λMλBp

, (3.23)

round plumes (i = 1, Z → ∞)

dεp

β0dz
= Ep =

Ypλp

2λMλBp

, (3.24)

where β0 = 2ε0F
−2
0 D−1. In conjunction with the parameter values given in table 3,

the values computed are for plane plumes (i = 0, Z → ∞) Ep = 0.661 and 0.494,
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Figure 9. Normalized kinetic energy flux of the mean motion as a function of Z and F0

using FOA and SOA solutions with F0 varied from 2.5 to 100 for (a) plane buoyant jets and
(b) round buoyant jets.

and for round plumes (i =1, Z → ∞) Ep = 0.500 and 0.411 for the FOA and SOA
results, correspondingly. In a neutral environment, Turner (1972) has reported the
computational values Ep = 0.578 and 0.500 for line and axisymmetric plumes, while
Rouse et al. (1952) have measured Ep = 0.53 and 0.57 for plane and round plumes,
respectively. It should be observed that the values of Ep remain approximately equal
for round or plane plumes, as their difference is only about 17 % according to present
SOA data and 7.5 % according to experimental results by Rouse et al. (1952).

Taking into consideration the conservation of the mean kinetic energy equation
(2.10), the flux of the f -kinetic energy terms normalized by β0 can be calculated by
the following equations:

plane plumes

εf

β0

= 1 +

[
a

(
wm

w0

F
2/3
0

)]3

− dε

β0dz
, (3.25)

round plumes

εf

β0

= 1 +
4

0.182
K3

wZ

[
a

(
wm

w0

F0

)]3

− dε

β0dz
. (3.26)
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Based on (3.25) and (3.26) and using the corresponding plume-like forms for velocity
and entrainment coefficient (tables 4 and 7) and (3.23) and (3.24), Efp (defined in
table 7) values were computed and show that the flux of the f -kinetic energy terms
is also conserved in the plume limiting case. For plane plumes, these values are Efp =
0.355 and 0.518, and for round plumes Efp = 0.511 and 0.595 for the FOA and SOA
solutions, respectively.

Another convenient relationship with general implications can be obtained by using
the definition of ε given in table 1 in conjunction with the definition of the local
Richardson number given by (3.1) and taking into account that β = β0 = 2ε0F

−2
0 D−1

for plane and round buoyant jets. After pertinent arrangements the following formula
is taken:

εR

β0z
= p, (3.27)

where p =
√

2π 2i3−(1+i)/2λ
−(3+2i)/(1+i)
M Kw . It is obvious that p is constant as both λM

and Kw are constants. Substituting the pertinent values for the FOA given in table 3,
values of p = 0.191 for plane buoyant jets and p = 0.167 and 0.201 for round jets
and plumes, respectively, are computed. After assigning λM and Kw values for the
SOA, p = 0.144 ± 0.0008 is obtained for both plane and round buoyant jets, which
means that it might be a universal constant. As the SOA gives the most reliable
results, the constant value p = 0.144 is adopted for (3.27) and by careful observation
the following significant implications can be deduced:

(i) The product εR/z is a conservative quantity for both plane and round buoyant
jets.

(ii) In the limiting plume case, where R equals to a constant Rp , both quantities
ε/z and dε/dz are conserved.

(iii) Equation (3.27) constitutes an alternative definition of the local Richardson
number and has the advantage that this definition obeys a common law independent
from the two-dimensional or three-dimensional geometrical properties of the flow and
mixing field.

A universal definition of the local Richardson number may therefore be proposed:

R ≡ p
β z

ε
, (3.28)

where p = 0.144 is a universal constant, β and ε the local buoyancy and kinetic energy
fluxes for the mean motion, and z the vertical distance from the jet exit. According to
this definition, the Richardson number compares locally the work done by the buoyant
force with the flux of the kinetic energy for the mean motion. Finally, it should be
noted that the property of conservation of the ratio of kinetic energy flux over distance
z or the gradient of kinetic energy flux for the mean motion have found significant
use in the solution of the multiple buoyant jet problem by extending the application
of the superposition method in the region of plume-like flows (Yannopoulos 1996;
Yannopoulos & Bekri 2003; Yannopoulos & Noutsopoulos 2005).

4. Summary and conclusions
Theoretical analysis was based on the four partial differential equations of

continuity, momentum, tracer and kinetic energy for the mean motion written on
the basis of acceptable simplifications for such types of flow. These equations are
given in a unified way for both plane and round turbulent buoyant jets discharged
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vertically upwards in a stagnant ambient fluid being a little denser than the jet
fluid. The integral method, in conjunction with the experimentally well-supported
assumption of Gaussian profiles for velocity and concentration, was used to reduce
the partial differential equations to a set of four ordinary differential equations,
including the variable second-order effect of turbulence on the mean momentum and
tracer fluxes according to Wang & Law (2002). The jet-spreading approach, initially
used by Abraham (1963), was employed to integrate the differential equations. The
basic closing assumption that γ , a function of spreading coefficients defined by (2.22),
is independent of distance z, initially adopted by NY for round buoyant jets and
implemented by YN in plane buoyant jets, is physically explained and enhanced in the
present work. According to (2.23), function γ is proportional to the square root of the
spreading coefficient Kc for plane buoyant jets and simply to Kc for round buoyant
jets, or equivalently to

√
λKw and λKw , with a maximum error 4 %; and since recent

experimental measurements demonstrate that the spreading coefficient Kw remains
constant, function γ becomes, respectively, proportional to

√
λ and λ. The variation of

concentration-to-velocity width ratio or dispersion ratio λ can only be ignored when
the FOA is implemented. In addition, present findings concerning function γ actually
imply that the mass (or tracer) spreading rate for plane and round buoyant jets is
approximately equal to the geometric mean of velocity and concentration spreading
rates divided by

√
2. Under this assumption and related approximations, the equations

of momentum and tracer were directly integrated, taking into consideration the proper
boundary conditions due to the ZFE, and this led to explicit analytical expressions
concerning the dimensionless centreline axial velocities and concentrations in a unified
way for both plane and round buoyant jets. The two analytical expressions, (2.27) and
(2.28), constitute solution approximations of either first or second order, depending
on the values and functional forms of the coefficients assigned; suggested values
have been given in table 3. The SOA solution requires the corresponding FOA
analytical solution to estimate an initial value of the Richardson number, which
in turn is used for the computation of all necessary parameters that depend on this
number. Applying iteratively this procedure for only three iterations yields the correct
value of the Richardson number and this leads to a converged SOA solution. The
corresponding FOA and SOA solutions compare well to each other, while comparisons
to experimental measurements available in the literature show very good agreement
for z/D � 7, with errors being less that 9 %. The FOA and SOA solutions applied for
computing the suggested coefficients (table 3) are validated for their overall end-effect
behaviour, expressed through the predicted limiting values of A and B , by comparing
them to corresponding average values of experimentally measured data during the
last two decades, which are available in the literature and are summarized in tables 5
and 6 for plane and round buoyant jets, respectively. The maximum absolute errors
made by using the FOA and SOA are 14.2 % and 7 %, hence, the proposed SOA
model accomplished the presupposition for errors less than 10 %.

The validated solutions have been used in order to compute the variation of
the local Richardson and Froude numbers and the dispersion ratio; again, the
SOA findings show better agreement with available data based on experimental
measurements. Values herein proposed for plume-like behaviour based on the SOA
solution are Rp = 0.2907 and 0.3521, Fp = 2.43 and 2.59, for plane and round plumes,
respectively; the dispersion ratio λ varies from jets to plumes in the corresponding
ranges 1.50 to 1.21 and 1.23 to 1.04 for plane and round buoyant jets, while the
empirical expressions adopted gave reasonable results. In addition, the proposed
solutions in conjunction with the integral equations of continuity and kinetic energy
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for the mean motion have been employed to determine the variation of bulk dilution,
dilution ratio, entrainment coefficient, transverse component of mean velocity, kinetic
energy flux, f -terms flux for the mean motion and the product of kinetic energy
flux and the local Richardson number, as well as the variation of the gradient of
these kinetic energy fluxes. Based on the SOA solution, the proposed variation of the
dilution ratio from jets to plumes is cm/Cav = 1.16 to 1.10 and 1.54 to 1.67, for plane
and round buoyant jets, respectively; the entrainment coefficient a varies in the ranges
of 0.0585 to 0.117 and 0.055 to 0.0917, while analytical functions for the profiles of
the transverse component of velocity for plane and round buoyant jets are given.

Particular attention was paid to the variation of the kinetic energy flux gradient
for the mean motion and especially the product of kinetic energy flux and the local
Richardson number. This product, divided by the initial buoyancy flux β0 and by the
distance z, is found to be a universal constant equal to 0.144 both for plane and round
buoyant jets. Conservation of both the kinetic energy flux divided by the distance
z and the gradient of the kinetic energy flux was found in the plume-like region,
for either plane or round plumes. A universal definition of the local Richardson
number, in a unique way irrespective of flow and mixing geometries, is proposed as
R ≡ pβz/ε. The new physical insight obtained by this work, in terms of the universal
conserved definition of R, can have a far-reaching implication to the future analysis
of buoyant-jet problems.
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